Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(17): 11311-11322, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623826

RESUMO

Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.

2.
ACS Nano ; 18(10): 7411-7423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412617

RESUMO

The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.


Assuntos
Polímeros , Polímeros/química , Adsorção , Propriedades de Superfície
3.
ACS Macro Lett ; 12(2): 118-124, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36630274

RESUMO

The self-assembly of block copolymers (BCPs) is dictated by their segregation strength, χN, and while there are well-developed methods for determining χ in the weak and strong segregation regimes, it is challenging to accurately measure χ of copolymers with intermediate segregation strengths, especially when copolymers have inaccessible order-disorder transition temperatures. χeff is often approximated by using strong segregation theory (SST), but utilizing these values to estimate the interface width (wm) of BCPs in the intermediate segregation regime often results in predictions that deviate significantly from measured values. Therefore, we propose using the extent of mixing, quantified as the normalized interface width wm/L0, where L0 is the block copolymer pitch, as a thermodynamic parameter. We experimentally measure wm and L0 for a series of lamellar A-b-(B-r-C) copolymers via resonant soft X-ray reflectivity and extract values of χeffN based on previous data collected for A-b-B copolymers. The composition profiles measured via reflectivity match the extracted χeffN values, while those calculated with SST predict much more mixed composition profiles. The extracted χeff values agreed quantitatively between copolymers of different molecular weights. We believe that this methodology will be well-suited for block copolymers used in lithographic applications due to their inaccessible order-disorder transition temperatures, intermediate values of χN, and the importance of wm for line edge roughness metrics.

4.
ACS Appl Mater Interfaces ; 15(1): 2020-2029, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534025

RESUMO

We report a method for the directed self-assembly (DSA) of block copolymers (BCPs) in which a first BCP film deploys homopolymer brushes, or "inks", that sequentially graft onto the substrate's surface via the interpenetration of polymer molecules during the thermal annealing of the polymer film on top of existing polymer brushes. By selecting polymer "inks" with the desired chemistry and appropriate relative molecular weights, it is possible to use brush interpenetration as a powerful technique to generate self-registered chemical contrast patterns at the same frequency as that of the domains of the BCP. The result is a process with a higher tolerance to dimensional and chemical imperfections in the guiding patterns, which we showcase by implementing DSA using homopolymer brushes for the guiding features as opposed to more robust cross-linkable mats. We find that the use of "inks" does not compromise the line width roughness, and the quality of the DSA as a lithographic mask is verified by implementing a robust "dry lift-off" pattern transfer.

5.
ACS Appl Mater Interfaces ; 13(23): 27006-27018, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096705

RESUMO

Growing demand for rechargeable batteries with higher energy densities has motivated research focused on enabling the lithium metal anode. A prominent failure mechanism in such batteries is short circuiting due to the uncontrolled propagation of lithium protrusions that often have a dendritic morphology. In this paper, the electrodeposition of metallic lithium through a rigid polystyrene-b-poly(ethylene oxide) (PS-b-PEO or SEO) block copolymer electrolyte was studied using hard X-ray microtomography. In this system, protrusions were approximately ellipsoidal globules: we take advantage of this simple geometry to quantify their growth as a function of polarization time and electrolyte salt concentration. The growth of 47 different globules was tracked with time to obtain average velocities of globule growth into the electrolyte. The globule diameter was a linear function of globule height in the electrolyte with a slope of about 6, independent of time and electrolyte salt concentration.

6.
ACS Appl Mater Interfaces ; 12(51): 57421-57430, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33307687

RESUMO

An important consideration when designing lithium battery electrolytes for advanced applications is how the electrolyte facilitates ion transport at fast charge and discharge rates. Large current densities are accompanied by large salt concentration gradients across the electrolyte. Nanostructured composite electrolytes have been proposed to enable the use of high energy density lithium metal anodes, but many questions about the interplay between the electrolyte morphology and the salt concentration gradient that forms under dc polarization remain unanswered. To address these questions, we use an in situ small-angle X-ray scattering technique to examine the nanostructure of a polystyrene-block-poly(ethylene oxide) copolymer electrolyte under dc polarization with spatial and temporal resolution. In the quiescent state, the electrolyte exhibits a lamellar morphology. The passage of ionic current in a lithium symmetric cell leads to the formation of concurrent phases: a disordered morphology near the negative electrode, lamellae in the center of the cell, and coexisting lamellae and gyroid near the positive electrode. The most surprising result of this study was obtained after the applied electric field was turned off: a current-induced gyroid phase grows in volume for 6 h in spite of the absence of an obvious driving force. We show that this reflects the formation of localized pockets of salt-dense electrolyte, termed concentration hotspots, under dc polarization. Our methods may be applied to understand the dynamic structure of composite electrolytes at appreciable current densities.

7.
Macromolecules ; 53(14)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041373

RESUMO

This study shows that it is possible to obtain homogeneous mixtures of two chemically distinct polymers with a lithium salt for electrolytic applications. This approach is motivated by the success of using mixtures of organic solvents in modern lithium-ion batteries. The properties of mixtures of a polyether, poly(ethylene oxide) (PEO), a poly(ether-acetal), poly(1,3,6-trioxocane) (P(2EO-MO)), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were studied by small-angle neutron scattering (SANS) and electrochemical characterization in symmetric cells. The SANS data are used to determine the miscibility window and quantify the effect of added salt on the thermodynamic interactions between the polymers. In the absence of salt, PEO/P(2EO-MO) blends are homogeneous and characterized by attractive interactions, i.e., a negative Flory-Huggins interaction parameter, χ. The addition of small amounts of salt results in a positive effective Flory-Huggins interaction parameter, χ eff, and macrophase separation. Surprisingly, miscible blends and negative χ eff parameters are obtained when the salt concentration is increased beyond a critical value. The electrochemical properties of PEO/P(2EO-MO)/LiTFSI blends at a given salt concentration were close to those obtained in PEO/LiTFSI electrolytes at the same salt concentration. This suggests that in the presence of PEO the electrochemical properties exhibited by P(2EO-MO) chains are similar to those of PEO chains. This work opens the door to a new direction for creating new and improved polymer electrolytes either by combining existing polymers and salt or by synthesizing new polymers with the specific aim of including them in miscible polymer blend electrolytes.

8.
J Phys Chem B ; 124(5): 921-935, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31967824

RESUMO

The design and engineering of composite materials is one strategy to satisfy the materials needs of systems with multiple orthogonal property requirements. In the case of rechargeable batteries with lithium metal anodes, the system requires a separator with fast lithium ion transport and good mechanical strength. In this work, we focus on the system polystyrene-block-poly(ethylene oxide) (SEO) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Ion transport occurs in the salt-containing poly(ethylene oxide)-rich domains. Mechanical rigidity arises due to the glassy nature of polystyrene (PS). If we assume that the salt does not interact with the PS-rich domains, we can describe ion transport in the electrolyte by three transport parameters (ionic conductivity, κ, salt diffusion coefficient, D, and cation transference number, t+0) and a thermodynamic factor, Tf. By systematically varying the volume fraction of the conducting phase, ϕc between 0.29 and 1.0, and chain length, N between 80 and 8000, we elucidate the role of morphology on ion transport. We find that κ is the strongest function of morphology, varying by three full orders of magnitude, while D is a weaker function of morphology. To calculate t+0 and Tf, we measure the current fraction, ρ+, and the open circuit potential, U, of concentration cells. We find that ρ+ and U follow universal trends as a function of salt concentration, regardless of chain length, morphology, or ϕc, allowing us to calculate t+0 for any SEO/LiTFSI or PEO/LiTFSI mixture when κ and D are known. The framework developed in this paper enables predicting the performance of any block copolymer electrolyte in a rechargeable battery.

9.
ACS Macro Lett ; 9(5): 639-645, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35648570

RESUMO

Polymer chain dynamics of a nanostructured block copolymer electrolyte, polystyrene-block-poly(ethylene oxide) (SEO) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, are investigated by neutron spin echo (NSE) spectroscopy on the 0.1-100 ns time scale and analyzed using the Rouse model at short times (t ≤ 10 ns) and the reptation tube model at long times (t ≥ 50 ns). In the Rouse regime, the monomeric friction coefficient increases with increasing salt concentration, as seen previously in homopolymer electrolytes. In the reptation regime, the tube diameters, which represent entanglement constraints, decrease with increasing salt concentration. The normalized longest molecular relaxation time, calculated from the NSE results, increases with increasing salt concentration. We argue that quantifying chain motion in the presence of ions is essential for predicting the behavior of polymer-electrolyte-based batteries operating at large currents.

10.
ACS Appl Mater Interfaces ; 11(51): 47878-47885, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769958

RESUMO

There is a growing demand for higher energy density lithium batteries. One approach for addressing this demand is enabling lithium metal anodes. However, nucleation and growth of electronically conductive protrusions, which cause short circuits, prevent the use of this technology with liquid electrolytes. The use of rigid solid electrolytes such as polystyrene-b-poly(ethylene oxide) electrolytes is one solution. An additional requirement for practical cells is needed to use electrolytes with high salt concentration to maximize the flux of lithium ions in the cell. The first systematic study of the effect of salt concentration on the morphology of electrodeposited lithium through a rigid block copolymer electrolyte is presented. The nature, areal density, and morphologies of defective lithium deposits created during galvanostatic cycling of lithium-lithium symmetric cells were determined using hard X-ray microtomography. Cycle life decreases rapidly with increasing salt concentration. X-ray microtomography reveals the presence of multiglobular protrusions, which are nucleated at impurity particles at low salt concentrations; here, the areal density of defective lithium deposits was independent of salt concentration. At the highest salt concentration, this density increases abruptly by a factor of about 10, and defects were also nucleated at locations where no impurities were visible.

11.
ACS Cent Sci ; 5(3): 419-427, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30937369

RESUMO

Despite efforts to develop increasingly targeted and personalized cancer therapeutics, dosing of drugs in cancer chemotherapy is limited by systemic toxic side effects. We have designed, built, and deployed porous absorbers for capturing chemotherapy drugs from the bloodstream after these drugs have had their effect on a tumor, but before they are released into the body where they can cause hazardous side effects. The support structure of the absorbers was built using 3D printing technology. This structure was coated with a nanostructured block copolymer with outer blocks that anchor the polymer chains to the 3D printed support structure and a middle block that has an affinity for the drug. The middle block is polystyrenesulfonate which binds to doxorubicin, a widely used and effective chemotherapy drug with significant toxic side effects. The absorbers are designed for deployment during chemotherapy using minimally invasive image-guided endovascular surgical procedures. We show that the introduction of the absorbers into the blood of swine models enables the capture of 64 ± 6% of the administered drug (doxorubicin) without any immediate adverse effects. Problems related to blood clots, vein wall dissection, and other biocompatibility issues were not observed. This development represents a significant step forward in minimizing toxic side effects of chemotherapy.

12.
ACS Macro Lett ; 8(2): 107-112, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619416

RESUMO

The order-to-disorder transition temperature (TODT) in a series of mixtures of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is identified by the disappearance of a quadrupolar 7Li NMR triplet peak splitting above a critical temperature, where a singlet is observed. The macroscopic alignment of ordered domains required to produce a quadrupolar splitting occurs due to exposure to the NMR magnetic field. Alignment is confirmed using small-angle X-ray scattering (SAXS). The TODT determined by NMR is consistent with that determined using SAXS.

13.
J Phys Chem B ; 122(33): 8065-8074, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30067357

RESUMO

We present experimental results on the phase behavior of block copolymer/salt mixtures over a wide range of copolymer compositions, molecular weights, and salt concentrations. The experimental system comprises polystyrene- block-poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. It is well established that LiTFSI interacts favorably with poly(ethylene oxide) relative to polystyrene. The relationship between chain length and copolymer composition at fixed temperature is U-shaped, as seen in experiments on conventional block copolymers and as anticipated from the standard self-consistent field theory (SCFT) of block copolymer melts. The phase behavior can be explained in terms of an effective Flory-Huggins interaction parameter between the polystyrene monomers and poly(ethylene oxide) monomers complexed with the salt, χeff, which increases linearly with salt concentration. The phase behavior of salt-containing block copolymers, plotted on a segregation strength versus copolymer composition plot, is similar to that of conventional (uncharged) block copolymer melts, when the parameter χeff replaces χ in segregation strength.

14.
Soft Matter ; 14(15): 2789-2795, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29513329

RESUMO

It is known that the addition of salts to symmetric block copolymers leads to stabilization of ordered phases and an increase in domain spacing; both trends are consistent with an increase in the effective Flory-Huggins interaction parameter between the blocks, χ. In this work, we show that the addition of salt to a disordered asymmetric block copolymer first leads to the formation of coexisting ordered phases which give way to a reentrant disordered phase at a higher salt concentration. The coexisting phases are both body centered cubic (BCC) with different domain spacings, stabilized by partitioning of the salt. Further increase in salt concentration results in yet another disorder-to-order transition; hexagonally packed cylinders are obtained in the high salt concentration limit. The coexisting phases formed at intermediate salt concentration, elucidated by electron tomography, showed the absence of macroscopic regions with distinct BCC lattices. A different asymmetric block copolymer with composition in the vicinity of the sample described above only showed only a single disorder-to-order transition. However, the dependence of domain spacing on salt concentration was distinctly non-monotonic, and similar to that of the sample with the reentrant phase behavior. This dependence appears to be an announcement of reentrant phase transitions in asymmetric block copolymer electrolytes. These results cannot be mapped on to the traditional theory of block copolymer electrolyte self-assembly based on an effective χ.

15.
ACS Macro Lett ; 7(9): 1056-1061, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632948

RESUMO

Nanostructured solid electrolytes containing ion-conducting domains and rigid nonconducting domains are obtained by block copolymer self-assembly. Here, we report on the synthesis and characteristics of mixtures of a hybrid diblock copolymer with an organic and inorganic block: poly(ethylene oxide)-b-poly(acryloisobutyl polyhedral oligomeric silsesquioxane) (PEO-POSS) and a lithium salt. In the neat state, PEO-POSS exhibits a classical order-to-disorder transition upon heating. Dilute electrolytes exhibit a dramatic reversal; a disorder-to-order transition upon heating is obtained, indicating that the addition of salt fundamentally changes interactions between the organic and inorganic chains. At higher salt concentrations, the electrolytes primarily form a lamellar phase. Coexisting lamellae and cylinders are found at intermediate salt concentrations and high temperatures. The conductivity and shear modulus of PEO-POSS are significantly higher than that of an all-organic block copolymer electrolyte with similar molecular weight and morphology, demonstrating that organic-inorganic block copolymers provide a promising route for developing the next generation of solid electrolytes for lithium batteries.

16.
Nat Mater ; 14(6): 643-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25985456

RESUMO

The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.


Assuntos
Reação a Corpo Estranho/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...